CHARLOTTE CUMMINGS, School of Chemistry, Newcastle University, Newcastle-upon-Tyne, United Kingdom; NICK WALKER, School of Natural and Environmental Sciences, Newcastle University, Newcastle-upon-Tyne, United Kingdom.

Microwave spectroscopy is a powerful technique for the study of weakly bound complexes formed between aromatic/heteroaromatic rings and other small molecules. However, there has been limited studies of binary complexes formed between alkyl-substituted heteroaromatic rings and water. The rotational spectrum of 2-ethylfuran--H$_2$O was recorded while probing a gaseous mixture of 2-ethylfuran, water and an inert carrier gas (argon or neon) using Chirped Pulse Fourier Transform Microwave (CP-FTMW) spectroscopy. Microwave spectra of five isotopologues of this complex have been assigned and analysed to determine rotational constants (A_0, B_0, C_0) and centrifugal distortion constants (D_{J}, D_{JK}, d_{1}). A previous microwave spectroscopy studya identified two conformations (C$_s$ and C$_1$) of 2-ethylfuran in a helium supersonic expansion. The C$_s$ conformation is planar, with the ethyl group lying coplanar with the ring, while the ethyl group in the C$_1$ conformation is tilted out of the plane of the ring. The analysis of the molecular geometry of the monohydrate complex has revealed that the binary complex is formed with the C$_1$ conformation of 2-ethylfuran only and is stabilised by a primary O$_{W}$--H--O hydrogen bond. Additionally, non-covalent interaction (NCI) and natural bond orbital (NBO) analysis have revealed the presence of additional weak interactions between the oxygen atom of the water molecule and the ethyl group. Preliminary results of 2-ethylimidazole--H$_2$O and 2-ethylthiazole--H$_2$O will also be discussed.