The broadband rotational spectra of ammonia-water (NH$_3$-H$_2$O) complex were measured in the frequency range from 50 to 250 GHz using a supersonic-jet emission spectrometer. The NH$_3$-H$_2$O complex exhibits two large amplitude motions (LAMs): almost free internal rotation of ammonia owing to very low torsional barrier (≈ 10 cm$^{-1}$), and the inversion of water characterized by relatively high barrier (≈ 700 cm$^{-1}$). Because of the latter and taking Doppler-limited resolution of spectrometer into account, we could not observe inversion tunneling splittings of a-type rotational transitions. In total, about 150 rotational transitions of NH$_3$-H$_2$O were assigned in this study. They were fitted together with the data from previous studiesb using the "hybrid" Hamiltonian approachc. The analysis is in progress as we are currently trying to modify the characteristics of supersonic expansion in order to achieve higher rotational temperatures and consequently to measure higher K_a transitions. The latest results will be presented.

aThis work has been supported by the French PN LEFE and ANR Labex CaPPA through the PIA under Contract No. ANR-11-LABX-0005-01
